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Introduction

Numerous studies have demonstrated that many
approaches are vulnerable to attacks. An im-
portant class of such attacks involves adversaries
changing features at test time to cause incor-
rect predictions. Previous investigations of this
problem pit a single learner against an adversary:.
However, in many situations an adversary’s de-
cision is aimed at a collection of learners, rather
than specifically targeted at each independently:.
We study the problem of adversarial linear re-
oression with multiple learners. We approximate
the resulting game by exhibiting an upper bound
on learner loss tunctions, and show that the re-
sulting game has a unique symmetric equilibrium.
We present an algorithm for computing this equi-
librium, and show through extensive experiments
that equilibrium models are significantly more ro-
bust than conventional regularized linear regres-
sion.

Learners and Attacker

We investigate the interactions between a collec-
tion of learners N' = {1, 2, ...,n} and an attacker
in regression problems.

Learners’ model. Each learner ¢ chooses 6; to

minimize its loss
¢i(0;, X)) = BU(X6;,y)+ (1 —p)(X0;,y) (1)
Attcker’s model. The attacker aims to gener-

ate a dataset (X', y) from the original data (X, y)
to minimize its loss function

({0}, X) = £ U(X0;,2)+AR(X, X) (2)
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Figure 1: An example of evading regressor

The Game

Overview
We propose Multi-Learner Stackelberg Game
(MLSG). At the high level, this game involves

two stages:

« First, all learners choose (train) their models
from data.

« decond, the attacker observes learners’ actions
and transforms test data to achieve malicious
ooals.

we use training data to estimate the cost func-
tions of the learners and attacker.
Assumptions

« Learners have complete information of each
other.

« Learners have the same action space and
training data.

= Learners know the loss function of the attacker.

« Columns of X are linearly independent.

Solution Concept

Multi-Learner Stackelberg Equilibrium
An action profile ({07} ,, X*) is an Multi-
Learner Stackelberg Equilibrium (MLSE) if it
satisfies

0 = argmin¢;(0;, X*(0)),Vi € N

0,cE / (3)
s.t. X%(0)=argminc,({0;}",X).
}(QERynxd

where 8 = {0;}!_, constitutes the joint actions
of the learners.

Best Response of the Attacker
X'=(\X+z %60, )M+ 660 )". (4

Nash Equilibrium

An action profile ({07} ,, X*) is an MLSE of
the multi-learner Stackelberg game it and only
if {67}, is a Nash Equilibrium of the game

(N, O, (¢;)) which solves
6%161% CZ'(HZ', 9_2'), V1 € N, (5)
with X* defined in Eq. (4) for 8, = 87,Vi € N,

Analysis of (N, 0, (¢;))

Approximation of the Game
we use (N, O, (¢;)) to approximate (N, @, (¢;)),
where

CVZ'(HZ', 9—2) — é(XHZ, y) —I—fz . 1(

€ 1s a positive constant and € < 400, since ¢; + €
is a convex upper bound of ¢;

Exsistence of NE
(N, O, (¢)) is a Symmetric Game and has at
least one symmetric Nash Equilibrium.

Uniqueness of NE
(N,O,(¢;)) has a unique Nash equilibrium.
Hence, this NE must be symmetric.

Computing NE

By using the property that (A, @, (¢;)) has a
unique symmetric NE. we can compute its solu-

tion by only solving a convex problem. Let

B(n+1
1(0) = 1x0.y) + " S V2 yip0Tey
(6)
Then, the unique symmetric NE of (N, @, (¢;)),
{07}, can be derived by solving the following
convex optimization problem

min f(6) (7)
and then letting 87 = 0*,Vi € N, where 6* is
the solution of Eq. (7). Hence, the NE can be 0b-
tatned by each learner independently, without

knowing others’ actions.

Robustness

The optimal solution 8* of the problem in Eq. (7)
is an optimal solution to the folloing robust lin-
car regression problem where data is maliciously
corrupted by some disturbance A.

: 2
min max ||y — (X + A)6][5, (8)

Thus, we theoretically draw a connection be-
tween the NE and robustness optimization.

Experiments
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Figure 2: RMSE of y" and y on PDF dataset. The defender
knows A, 3, and z.
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Figure 3: The average RMSE across different values of actual

A and 0 on PDF dataset. Upper Left: MLSG; Upper Right:
[ asso; Lower Left: Ridge; Lower Right: OLS.

Conclusion

« Using the proposed game can improve the
robustness of multiple learners.

« It is advantageous to overestimate attackers.
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