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Introduction

Numerous studies have demonstrated that many
approaches are vulnerable to attacks. An im-
portant class of such attacks involves adversaries
changing features at test time to cause incor-
rect predictions. Previous investigations of this
problem pit a single learner against an adversary.
However, in many situations an adversary’s de-
cision is aimed at a collection of learners, rather
than specifically targeted at each independently.
We study the problem of adversarial linear re-
gression with multiple learners. We approximate
the resulting game by exhibiting an upper bound
on learner loss functions, and show that the re-
sulting game has a unique symmetric equilibrium.
We present an algorithm for computing this equi-
librium, and show through extensive experiments
that equilibrium models are significantly more ro-
bust than conventional regularized linear regres-
sion.

Learners and Attacker

We investigate the interactions between a collec-
tion of learners N = {1, 2, ..., n} and an attacker
in regression problems.
Learners’ model. Each learner i chooses θi to
minimize its loss
ci(θi,X

′) = β`(X′
θi,y) + (1− β)`(Xθi,y) (1)

Attcker’s model. The attacker aims to gener-
ate a dataset (X′,y) from the original data (X,y)
to minimize its loss function
ca({θi}ni=1,X

′) = n∑
i=1
`(X′

θi, z)+λR(X′
,X) (2)

Figure 1: An example of evading regressor

The Game

Overview
We propose Multi-Learner Stackelberg Game
(MLSG). At the high level, this game involves
two stages:
•First, all learners choose (train) their models
from data.

•Second, the attacker observes learners’ actions
and transforms test data to achieve malicious
goals.

we use training data to estimate the cost func-
tions of the learners and attacker.
Assumptions
•Learners have complete information of each
other.

•Learners have the same action space and
training data.

•Learners know the loss function of the attacker.
•Columns of X are linearly independent.

Solution Concept

Multi-Learner Stackelberg Equilibrium
An action profile ({θ∗i }ni=1,X∗) is an Multi-
Learner Stackelberg Equilibrium (MLSE) if it
satisfies
θ∗i = arg min

θi∈Θ
ci(θi,X∗(θ)),∀i ∈ N

s.t. X∗(θ) = arg min
X′∈Rm×d

ca({θi}ni=1,X
′). (3)

where θ = {θi}ni=1 constitutes the joint actions
of the learners.
Best Response of the Attacker

X∗ = (λX + z n∑
i=1

θ>i )(λI + n∑
i=1

θiθ
>
i )−1. (4)

Nash Equilibrium
An action profile ({θ∗i }ni=1,X∗) is an MLSE of
the multi-learner Stackelberg game if and only
if {θ∗i }ni=1 is a Nash Equilibrium of the game
〈N ,Θ, (ci)〉 which solves

min
θi∈Θ

ci(θi,θ−i),∀i ∈ N , (5)

with X∗ defined in Eq. (4) for θi = θ∗i ,∀i ∈ N .

Analysis of 〈N ,Θ, (ci)〉

Approximation of the Game
we use 〈N ,Θ, (c̃i)〉 to approximate 〈N ,Θ, (ci)〉,
where
c̃i(θi,θ−i) = `(Xθi,y) + β

λ2||z− y||22
n∑
j=1

(θ>j θi)2,

ε is a positive constant and ε < +∞, since c̃i + ε
is a convex upper bound of ci
Exsistence of NE
〈N ,Θ, (c̃i)〉 is a Symmetric Game and has at
least one symmetric Nash Equilibrium.
Uniqueness of NE
〈N ,Θ, (c̃i)〉 has a unique Nash equilibrium.
Hence, this NE must be symmetric.

Computing NE

By using the property that 〈N ,Θ, (c̃i)〉 has a
unique symmetric NE, we can compute its solu-
tion by only solving a convex problem. Let

f (θ) = `(Xθ,y) + β(n + 1)
2λ2 ||z− y||22(θ>θ)2,

(6)
Then, the unique symmetric NE of 〈N ,Θ, (c̃i)〉,
{θ∗i }ni=1, can be derived by solving the following
convex optimization problem

min
θ∈Θ

f (θ) (7)
and then letting θ∗i = θ∗,∀i ∈ N , where θ∗ is
the solution of Eq. (7). Hence, the NE can be ob-
tained by each learner independently, without
knowing others’ actions.

Robustness

The optimal solution θ∗ of the problem in Eq. (7)
is an optimal solution to the folloing robust lin-
ear regression problem where data is maliciously
corrupted by some disturbance ∆.

min
θ∈Θ

max
4∈U
||y− (X + 4)θ||22, (8)

Thus, we theoretically draw a connection be-
tween the NE and robustness optimization.

Experiments

Complete Information

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
M

S
E

Lasso
OLS
Ridge
MLSG

Figure 2: RMSE of y′ and y on PDF dataset. The defender
knows λ, β, and z.

Imcomplete Information
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Figure 3: The average RMSE across different values of actual
λ and β on PDF dataset. Upper Left: MLSG ; Upper Right:
Lasso; Lower Left: Ridge; Lower Right: OLS.

Conclusion

•Using the proposed game can improve the
robustness of multiple learners.

• It is advantageous to overestimate attackers.
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